Quantum computing was first theorized in 1981 as a way to address a subset of exponentially complex computing problems that classical computers can’t solve. It has taken more than three decades, but we are now at the cusp of moving from scientific theory to commercial reality.

Quantum computers rely on quantum mechanical properties of matter to encode data and perform calculations. These effects, which include superposition and entanglement, occur only at atomic and subatomic scales. Because quantum computers process information in a fundamentally different way than classical computers do, they can tap an exponential increase in computing power. We are likely to achieve quantum supremacy, the point at which quantum computers can solve problems that classical computers cannot, in the next few years. This will move quantum computing from the realm of science project to solving real challenges.

How It Works

Scientists including Albert Einstein, Max Planck, and Erwin Schrödinger developed the theory of quantum mechanics in the early 1900s. This new theory explained phenomena they saw in their experiments but were unable to reconcile with classical Newtonian physics. These phenomena enable quantum computing.
The fundamental building block in classical computing is the bit, which is either a 0 (the transistor is off) or a 1 (the transistor is on). Transistors, which were invented in 1947, are the building blocks of microprocessors and other computer chips. Computing power has continuously improved by shrinking the size of transistors but we are now running into physical limits.

The fundamental building block in a quantum computer is the quantum bit (qubit). As in classical computing, the qubit also takes the form of a 0 or a 1. But here is where it gets tricky. Due to the quantum phenomenon of superposition, a qubit can also be a 0 and a 1 at the same time. This enables a qubit to store more information than a bit. Quantum computers also benefit from the phenomenon of entanglement, or what Einstein called “spooky action at a distance.” When qubits become entangled, they become intrinsically linked and hence no longer act independently. Acting on one qubit effectively acts on all the entangled qubits simultaneously. Superposition and entanglement allow quantum computers to process information simultaneously. This means that they have the potential to process massive amounts of data exponentially faster than can a classical computer.

Here’s why quantum computing is so groundbreaking: With classical computers, computing power doubles as the number of bits doubles. With quantum computers, computing power doubles when an incremental qubit is added. Today quantum computing is in its infancy, similar to where classical computing was in the early 1950s. And challenges remain. For example, the transistor is the standard form factor for a bit in classical computing, but there is no standardized qubit in quantum computing. Scientists are pursuing multiple methods to build qubits, including superconducting circuits, ion traps, and silicon quantum dots. The largest quantum computers today have fewer than 100 qubits and are not yet capable of performing useful tasks. However, new applications will blossom as quantum computer hardware improves.

Why It’s Disruptive

Ironically, one of the first likely applications of quantum computing is to break encryption on classical computers. The secure transfer of data over the internet relies on public key cryptography, which uses a public key to encrypt data and a private key to decode it. Public key cryptography is currently based on prime number factoring. The principle is that it is very easy for
a computer to multiply two prime
numbers together to produce a third
number, but exceedingly difficult for a
computer to start with the third number
and determine its prime factors. The
private key is derived from the prime
numbers while the public key is derived
from their product. Users can make data
secure by making the prime numbers
so large that factoring their product
through brute force is intractable for
even the most powerful supercomputers.

Peter Shor, a professor of mathematics
at MIT, invented his eponymous
algorithm in 1994 that demonstrated
that quantum computers would excel
at this factoring problem. A quantum
computer could crack a 2048-bit RSA
encryption, the gold standard today,
in as little as eight hours.1 RSA-2048
remains secure because the quantum
hardware needed to break it does not
yet exist. But it could in theory be
broken with a perfectly functioning
quantum computer of just 4,100 qubits.
Based on the present rate of progress,
its likely that a quantum computer
will exist within the next decade that
will be able to crack today’s public key
cryptography. Companies, governments,
and organizations that rely on public key
cryptography (i.e., anyone who sends
or receives data via the internet) will
therefore need to transition to security
protocols that quantum computers
can’t crack. This change might present
cybersecurity companies opportunities
and risks and could provide a pathway
for new entrants into the field.

While quantum computing is still in the
early stage of research, it shows promise
in other areas as well. It was originally
proposed as a way to model quantum
physics and chemistry and those remain
promising applications. Classical
computers have difficulty modeling
the behavior of molecules accurately
because a molecule’s complexity increases
exponentially with the number of
electrons in the molecule. For example,
caffeine ($C_{8}H_{10}N_{4}O_{2}$), is too complex
to model on a classical computer even
though it is not a large molecule.
This complexity arises because the
laws of quantum mechanics govern
the behavior of electrons. Electrons
are exceedingly difficult to model on
classical computers as they can exist in
superposition and become entangled.

Here is where quantum computing
has a huge advantage. A quantum
computer superposes and entangles its
own qubits, which innately models the
behavior of electrons in the molecule.
This allows a quantum computer to
process significantly more data than a
classical computer can. The hope is that
scientists can fundamentally understand
how molecules work on a subatomic
level, which will allow them to design
designer materials, catalysts, and drugs. For
instance, bacteria convert atmospheric
nitrogen into ammonia using the enzyme
nitrogenase more efficiently than do
humans, who use the Haber-Bosch
process. Scientists know that nitrogenase
catalyzes the reaction but still do not
understand how. They hope that a better
understanding of nitrogenase will allow
them to design a more efficient process for
making ammonia, the key raw material
for nitrogen fertilizers. Producing
ammonia more efficiently would not
only lower costs but would also reduce
greenhouse gas emissions. This type of
modeling, made possible by quantum
computers, will enable scientists to
design everything from better batteries
to more efficient solar panels to high-
temperature superconductors.

Quantum computing has other
potential applications. It could shorten
the time required to perform
an internet search. It could tackle all
sorts of optimization problems such
as scheduling, routing, and options
pricing. Quantum computing may
even apply to machine learning. In
each of these domains, quantum
computing should be significantly
faster than classical computing but may
demonstrate the same exponential
increase in processing speed as in
cryptography and quantum simulation.

Challenges

Quantum computing is still in its
infancy and there are still a lot of
challenges. The incredible power of
quantum computers comes from
their ability to harness superposition
and entanglement. But these
quantum phenomena are very fragile.
Decoherence (i.e., losing superposition
through the quantum computer’s
interactions/entanglement with the
external environment) causes the
quantum computer to lose information
to its external environment, similar to
how a cooling stove loses heat to its
surroundings. This introduces errors
into the computer’s calculations.

Preventing decoherence requires
extreme measures such as chilling
computers to absolute zero and isolating
them from all forms of electromagnetic
radiation and sound.

Even with these extraordinary efforts,
a quantum computer may have
only milliseconds to perform
calculations before decoherence
renders its results useless. Scientists
need to increase coherence time for
quantum computers to be truly useful.
Quantum computers by nature are
error prone because noise can creep
into the calculations even without
full decoherence when qubits are
exposed to the slightest perturbation.
Classical computers, by contrast,
are discrete and predictable. Scientists
are working on error mitigation
and error correction strategies
simultaneously in order to make
quantum computers more practical.

Scaling is a related obstacle. Adding
more qubits to a computer increases
challenges with decoherence and
can add errors into calculations.
Figuring out how to increase the
number of qubits while reducing errors
is a huge focus of research. Finally,
scientists need to develop new
algorithms to unlock potential
applications for quantum computers
because they work completely
differently than classical computers do.

Conclusion
The notion that Moore’s Law, the idea that classical computing capability doubles every two years, is dead has gained traction in recent years. Quantum computing offers a possible path to continue the improvement in computing. While still nascent, quantum computing has the potential to improve much faster than the rate suggested by Moore’s Law. In fact, quantum computing is said to follow Neven’s Law, which states, “Quantum computing is experiencing doubly exponential growth relative to conventional computing.” If Neven’s Law proves true, we can expect to see huge advances in quantum computing over the next decade. Quantum computing offers the potential to improve our lives by enabling everything from better renewable energy technologies to new drugs to cure complex diseases. Quantum computing could become a foundational technology in the decades ahead.

Risk Considerations
There is no assurance that a Portfolio will achieve its investment objective. Portfolios are subject to market risk, which is the possibility that the market values of securities owned by the Portfolio will decline and that the value of Portfolio shares may therefore be less than what you paid for them. Market values can change daily due to economic and other events (e.g. natural disasters, health crises, terrorism, conflicts and social unrest) that affect markets, countries, companies or governments. It is difficult to predict the timing, duration, and potential adverse effects (e.g. portfolio liquidity) of events. Accordingly, you can lose money investing in this Portfolio. Please be aware that this Portfolio may be subject to certain additional risks. In general, equities securities’ values also fluctuate in response to activities specific to a company. Investments in foreign markets entail special risks such as currency, political, economic, market and liquidity risks. The risks of investing in emerging market countries are greater than risks associated with investments in foreign developed countries. Privately placed and restricted securities may be subject to resale restrictions as well as a lack of publicly available information, which will increase their illiquidity and could adversely affect the ability to value and sell them (liquidity risk). Derivative instruments may disproportionately increase losses and have a significant impact on performance. They also may be subject to counterparty, liquidity, valuation, correlation and market risks. Illiquid securities may be more difficult to sell and value than public traded securities (liquidity risk).
Counterpoint Global

New York

<table>
<thead>
<tr>
<th>INVESTORS</th>
<th>RESEARCH RESPONSIBILITIES</th>
<th>YEARS OF EXPERIENCE</th>
<th>YEARS WITH FIRM</th>
<th>YEARS WITH TEAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENNIS LYNCH</td>
<td>Lead Investor</td>
<td>26</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>SAM CHAINANI</td>
<td>Communication Services, Financials, Internet</td>
<td>24</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>JASON YEUNG</td>
<td>Health Care</td>
<td>23</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>ARMISTEAD NASH</td>
<td>Business Services, Software</td>
<td>20</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>DAVID COHEN</td>
<td>Consumer</td>
<td>32</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>ALEX NORTON</td>
<td>Consumer, Industrials, Technology (ex Software)</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>THOMAS KAMEI</td>
<td>Internet, Sustainability</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>MANAS GAUTAM</td>
<td>Generalist</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ANNE EDELSTEIN</td>
<td>Health Care</td>
<td>9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ABHIK KUMAR</td>
<td>Business Services, Software</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>JOSHUA JARRETT</td>
<td>Generalist</td>
<td>15</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>ALEKS SAMETS</td>
<td>Payments</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>DISRUPTIVE CHANGE RESEARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAN DELANEY</td>
<td>Big Ideas, Emerging Themes</td>
<td>19</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>SASHA COHEN</td>
<td>Big Ideas, Emerging Themes</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CONSIDENT RESEARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICHAEL MAUBOUSSIN</td>
<td>Head of Consilient Research</td>
<td>33</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>DAN CALLAHAN</td>
<td>Consilient Research</td>
<td>15</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CLIENT RELATIONSHIP AND BUSINESS MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARK TODTFELD</td>
<td>Chief Operating Officer</td>
<td>25</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>MARY SUE MARSHALL</td>
<td>Portfolio Specialist</td>
<td>40</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>PRAJAKTA NADKARNI</td>
<td>Portfolio Specialist</td>
<td>16</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>MCKENZIE BURKHARDT</td>
<td>Portfolio Specialist</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>EARL PRYCE</td>
<td>Portfolio Administrator</td>
<td>20</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>ROBERT ROSS</td>
<td>Portfolio Administrator</td>
<td>28</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>CHAYSE MORGAN</td>
<td>Portfolio Administrator</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>RUOBING CHANG</td>
<td>Business Management</td>
<td>8</td>
<td>4</td>
<td><1</td>
</tr>
</tbody>
</table>

Global Opportunity

Asia

KRISTIAN HEUGH, Lead Investor
- 6 Investors, 5 Portfolio Specialists

Investor refers to an analyst or portfolio manager of Counterpoint Global.
Team members may change without notice from time to time. Years of Experience listed above refers to Industry Experience. Years of Experience, Years with Firm and Years with Team are as of June 2020.
DISTRIBUTION
This communication is only intended for and will only be distributed to persons resident in jurisdictions where such distribution or availability would not be contrary to local laws or regulations. MSIM, the asset management division of Morgan Stanley (NYSE: MS), and its affiliates have arrangements in place to market each other’s products and services. Each MSIM affiliate is regulated as appropriate in the jurisdiction it operates. MSIM’s affiliates are: Eaton Vance Management (International) Limited, Eaton Vance Advisers International Ltd, Calvert Research and Management, Eaton Vance Management, Parametric Portfolio Associates LLC, Atlanta Capital Management LLC, Eaton Vance Global Advisors Ltd, Eaton Vance Management International (Asia) Pte. Ltd.

Ireland: MSIM Fund Management (Ireland) Limited. Registered Office: The Observatory, 7-11 Sir John Rogerson’s Quay, Dublin 2, D02 VC42, Ireland. Registered in Ireland as a private company limited by shares under company number 616661. MSIM Fund Management (Ireland) Limited is regulated by the Central Bank of Ireland. United Kingdom: Morgan Stanley Investment Management Limited is authorised and regulated by the Financial Conduct Authority. Registered in England. Registered No. 981121. Registered Office: 25 Cabot Square, Canary Wharf, London E14 4QA, authorised and regulated by the Financial Conduct Authority. Dubai: Morgan Stanley Investment Management Limited (Representative Office; Unit Precinct 3-7th Floor-Unit 701 and 702, Level 7, Gate Precinct Building 3, Dubai International Financial Centre, Dubai, 506501, United Arab Emirates. Telephone: +97 (0) 4 709 7158). Germany: MSIM Fund Management (Ireland) Limited Niederlassung Deutschland, Grosse Gallusstrasse 18, 60312 Frankfurt am Main, Germany (Gattung: Zweigniederlassung (FDI) gem. § 53b KWG). Italy: MSIM Fund Management (Ireland) Limited, Milan Branch (Sede Secondaria di Milano) is a branch of MSIM Fund Management (Ireland) Limited, a company registered in Ireland, regulated by the Central Bank of Ireland and whose registered office is at The Observatory, 7-11 Sir John Rogerson’s Quay, Dublin 2, D02 VC42, Ireland. MSIM Fund Management (Ireland) Limited Milan Branch (Sede Secondaria di Milano) with seat in Palazzo Serbelloni Corso Venezia, 16 20121 Milano, Italy, is registered in Italy with company number and VAT number IT0882809064. The Netherlands: MSIM Fund Management (Ireland) Limited, Rembrandt Tower, 11th Floor Amstelplein 11096HA, Netherlands. Telephone: 31 2-0462-1300. Morgan Stanley Investment Management is a branch office of MSIM Fund Management (Ireland) Limited. MSIM Fund Management (Ireland) Limited is regulated by the Central Bank of Ireland. France: MSIM Fund Management (Ireland) Limited, Paris Branch is a branch of MSIM Fund Management (Ireland) Limited, a company registered in Ireland, regulated by the Central Bank of Ireland and whose registered office is at The Observatory, 7-11 Sir John Rogerson’s Quay, Dublin 2, D02 VC42, Ireland. MSIM Fund Management (Ireland) Limited Paris Branch with seat at 61 rue de Monceau 75008 Paris, France, is registered in France with company number 890 071 863 RCS. Spain: MSIM Fund Management (Ireland) Limited, Sucursal en España is a branch of MSIM Fund Management (Ireland) Limited, a company registered in Ireland, regulated by the Central Bank of Ireland and whose registered office is at The Observatory, 7-11 Sir John Rogerson’s Quay, Dublin 2, D02 VC42, Ireland. MSIM Fund Management (Ireland) Limited, Sucursal en España with seat in Calle Serrano 55, 28006, Madrid, Spain, is registered in Spain with tax identification number W00198280D. Switzerland: Morgan Stanley & Co. International plc, London, Zurich Branch Authorised and regulated by the Eidgenössische Finanzmarktaufsicht ("FINMA"). Registered with the Register of Commerce Zurich CHE-115 475 770. Registered Office: Beethovenstrasse 33, 8002 Zurich, Switzerland, Telephone +41 (0) 44 588 1000. Facsimile Fax: +41(0) 44 588 1074. U.S.: A separately managed account may not be appropriate for all investors. Separate accounts managed according to the Strategy include a number of securities and will not necessarily track the performance of any index. Please consider the investment objectives, risks and fees of the Strategy carefully before investing. A minimum asset level is required. For important information about the investment manager, please refer to Form ADV Part 2. Please consider the investment objectives, risks, charges and expenses of the funds carefully before investing. The prospectuses contain this and other information about the funds. To obtain a prospectus please download one at morganstanley.com/im or call 1-800-548-7786. Please read the prospectus carefully before investing.

Morgan Stanley Distribution, Inc. serves as the distributor for Morgan Stanley Funds.

NOT FDIC INSURED | OFFER NO BANK GUARANTEE | MAY LOSE VALUE | NOT INSURED BY ANY FEDERAL GOVERNMENT AGENCY | NOT A BANK DEPOSIT

Hong Kong: This document has been issued by Morgan Stanley Asia Limited for use in Hong Kong and shall only be made available to “professional investors” as defined under the Securities and Futures Ordinance of Hong Kong (Cap 571). The contents of this document have not been reviewed nor approved by any regulatory authority including the Securities and Futures Commission in Hong Kong. Accordingly, save where an exemption is available under the relevant law, this document shall not be issued, circulated, distributed, directed at, or made available to, the public in Hong Kong. Singapore: This document should not be considered to be a subject of an invitation for subscription or purchase, whether directly or indirectly, to the public or any member of the public in Singapore other than (i) to an institutional investor under section 304 of the Securities and Futures Act, Chapter 289 of Singapore ("SFA"), (ii) to a “relevant person” (which includes an accredited investor) pursuant to section 305 of the SFA, and such distribution is in accordance with the conditions specified in section 305 of the SFA, or (iii) otherwise pursuant to, and in accordance with the conditions of, any other applicable provision of the SFA. This publication has not been reviewed by the Monetary Authority of Singapore. Australia: This publication is disseminated in Australia by Morgan Stanley Investment Management (Australia) Pty Limited ACN: 122044037, AFSL No. 311812, which accepts responsibility for its contents. This publication, and any access to it, is intended only for “wholesale clients” within the meaning of the Australian Corporations Act.

Japan: For professional investors, this document is circulated or distributed for informational purposes only. For those who are not professional investors, this document is provided in relation to Morgan Stanley Investment Management (Japan) Co., Ltd. ("MSIMJ")’s business with respect to discretionary investment management agreements ("IMA") and investment advisory agreements ("IAA"). This is not for the purpose of a recommendation or solicitation of transactions or offers any particular financial instruments. Under an IMA, with respect to management of assets of a client, the client prescribes basic management policies in advance and commissions MSIMJ to make all...
investment decisions based on an analysis of the value, etc. of the securities, and MSIM) accepts such commission. The client shall delegate to MSIM the authorities necessary for making investment. MSIM exercises the delegated authorities based on investment decisions of MSIM, and the client shall not make individual instructions. All investment profits and losses belong to the clients; principal is not guaranteed. Please consider the investment objectives and nature of risks before investing. As an investment advisory fee for an IAA or an IMA, the amount of assets subject to the contract multiplied by a certain rate (the upper limit is 2.20% per annum (including tax)) shall be incurred in proportion to the contract period. For some strategies, a contingency fee may be incurred in addition to the fee mentioned above. Indirect charges also may be incurred, such as brokerage commissions for incorporated securities. Since these charges and expenses are different depending on a contract and other factors, MSIM cannot present the rates, upper limits, etc. in advance. All clients should read the Documents Provided Prior to the Conclusion of a Contract carefully before executing an agreement. This document is disseminated in Japan by MSIMJ, Registered No. 410 (Director of Kanto Local Finance Bureau (Financial Instruments Firms)), Membership: the Japan Securities Dealers Association, The Investment Trusts Association, Japan, the Japan Investment Advisers Association and the Type II Financial Instruments Firms Association.

IMPORTANT INFORMATION

EMEA. This marketing communication has been issued by MSIM Fund Management (Ireland) Limited. MSIM Fund Management (Ireland) Limited is regulated by the Central Bank of Ireland. MSIM Fund Management (Ireland) Limited is incorporated in Ireland as a private company limited by shares with company registration number 616661 and has its registered address at The Observatory, 7-11 Sir John Rogerson’s Quay, Dublin 2, D02 VC42, Ireland. There is no guarantee that any investment strategy will work under all market conditions, and each investor should evaluate their ability to invest for the long-term, especially during periods of downturn in the market. Prior to investing, investors should carefully review the strategy’s / product’s relevant offering document. There are important differences in how the strategy is carried out in each of the investment vehicles.

A separately managed account may not be appropriate for all investors. Separate accounts managed according to the Strategy include a number of securities and will not necessarily track the performance of any index. Please consider the investment objectives, risks and fees of the Strategy carefully before investing.

The views and opinions are those of the author or the investment team as of the date of preparation of this material and are subject to change at any time due to market or economic conditions and may not necessarily come to pass. Furthermore, the views will not be updated or otherwise revised to reflect information that subsequently becomes available or circumstances existing, or changes occurring, after the date of publication. The views expressed do not reflect the opinions of all investment teams at Morgan Stanley Investment Management (MSIM) or the views of the firm as a whole, and may not be reflected in all the strategies and products that the Firm offers.

Forecasts and/or estimates provided herein are subject to change and may not actually come to pass. Information regarding expected market returns and market outlooks is based on the research, analysis and opinions of the authors. These conclusions are speculative in nature, may not come to pass and are not intended to predict the future performance of any specific Morgan Stanley Investment Management product.

Certain information herein is based on data obtained from third party sources believed to be reliable. However, we have not verified this information, and we make no representations whatsoever as to its accuracy or completeness. The information herein is a general communications which is not impartial and has been prepared solely for information and educational purposes and does not constitute an offer or a recommendation to buy or sell any particular security or to adopt any specific investment strategy. The material contained herein has not been based on a consideration of any individual client circumstances and is not investment advice, nor should it be construed in any way as tax, accounting, legal or regulatory advice. To that end, investors should seek independent legal and financial advice, including advice as to tax consequences, before making any investment decision.

This communication is not a product of Morgan Stanley’s Research Department and should not be regarded as a research recommendation. The information contained herein has not been prepared in accordance with legal requirements designed to promote the independence of investment research and is not subject to any prohibition on dealing ahead of the dissemination of investment research.

The information contained in this communication is not a research recommendation or ‘investment research’ and is classified as a ‘Marketing Communication’ in accordance with the applicable European regulation or Swiss regulation. This means that this marketing communication (a) has not been prepared in accordance with legal requirements designed to promote the independence of investment research (b) is not subject to any prohibition on dealing ahead of the dissemination of investment research.

The Firm has not authorised financial intermediaries to use and to distribute this document, unless such use and distribution is made in accordance with applicable law and regulation. Additionally, financial intermediaries are required to satisfy themselves that the information in this document is appropriate for any person to whom they provide this document in view of that person’s circumstances and purpose. The Firm shall not be liable for, and accepts no liability for, the use or misuse of this document by any such financial intermediary.

The whole or any part of this work may not be directly or indirectly reproduced, copied, modified, used to create a derivative work, performed, displayed, published, posted, licensed, framed, distributed or transmitted or any of its contents disclosed to third parties without MSIM’s express written consent. This work may not be linked to unless such hyperlink is for personal and non-commercial use. All information contained herein is proprietary and is protected under copyright and other applicable law. Morgan Stanley Investment Management is the asset management division of Morgan Stanley.

This document may be translated into other languages. Where such a translation is made this English version remains definitive. If there are any discrepancies between the English version and any version of this document in another language, the English version shall prevail.